Skip to content

[Kernel] Fix GroupNormGradKernel when d_x is nullptr #72358

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
90 changes: 51 additions & 39 deletions paddle/phi/kernels/cpu/group_norm_grad_kernel.cc
Original file line number Diff line number Diff line change
Expand Up @@ -52,19 +52,25 @@ void GroupNormGradKernel(const Context& dev_ctx,
data_layout == DataLayout::kNCHW ? x_dims[1] : x_dims[x_dims.size() - 1]);
const int group_size = C / groups;

dev_ctx.template Alloc<T>(d_x);
phi::funcs::SetConstant<CPUContext, T> set_zero;

auto* x_data = y.data<T>();
auto* d_x_data = d_x->data<T>();
auto* y_data = d_y.data<T>();
auto* var_data = var.data<T>();

T* d_x_data = nullptr;
if (d_x) {
dev_ctx.template Alloc<T>(d_x);
d_x_data = d_x->data<T>();
}

T* d_scale_data = nullptr;
if (d_scale) {
dev_ctx.template Alloc<T>(d_scale);
set_zero(dev_ctx, d_scale, static_cast<T>(0));
d_scale_data = d_scale->data<T>();
}

T* d_bias_data = nullptr;
if (d_bias) {
dev_ctx.template Alloc<T>(d_bias);
Expand Down Expand Up @@ -124,22 +130,23 @@ void GroupNormGradKernel(const Context& dev_ctx,
d_scale_data[gid * group_size + cid] += val * dval;
}
}

for (int cid = 0; cid < number; cid++) {
for (int imid = 0; imid < imsize;
imid++, iter_d_x_data++, tmp_x++, tmp_y++) {
T v_y = tmp_x[0];
T dly = tmp_y[0];
T dss = dp_scale;
T dbs = dp_bias;
T v_scale = 1., v_bias = 0.;
if (scale_data) v_scale = scale_data[gid * group_size + cid];
if (bias_data) v_bias = bias_data[gid * group_size + cid];
v_y -= v_bias;
if (v_scale != 0) v_y /= v_scale;
iter_d_x_data[0] =
(dly * v_scale - number_inv * dss * v_y - number_inv * dbs) *
var_inv;
if (d_x_data) {
for (int cid = 0; cid < number; cid++) {
for (int imid = 0; imid < imsize;
imid++, iter_d_x_data++, tmp_x++, tmp_y++) {
T v_y = tmp_x[0];
T dly = tmp_y[0];
T dss = dp_scale;
T dbs = dp_bias;
T v_scale = 1., v_bias = 0.;
if (scale_data) v_scale = scale_data[gid * group_size + cid];
if (bias_data) v_bias = bias_data[gid * group_size + cid];
v_y -= v_bias;
if (v_scale != 0) v_y /= v_scale;
iter_d_x_data[0] =
(dly * v_scale - number_inv * dss * v_y - number_inv * dbs) *
var_inv;
}
}
}
} else {
Expand All @@ -162,35 +169,40 @@ void GroupNormGradKernel(const Context& dev_ctx,
d_scale_data[gid * group_size + cid] += val * dval;
}
}

for (int cid = 0; cid < number; cid++) {
tmp_x = x_src_data + cid;
tmp_y = y_src_data + cid;
iter_d_x_data = tmp_d_x + cid;
for (int imid = 0; imid < imsize;
imid++, iter_d_x_data += C, tmp_x += C, tmp_y += C) {
T v_y = tmp_x[0];
T dly = tmp_y[0];
T dss = dp_scale;
T dbs = dp_bias;
T v_scale = 1.0, v_bias = 0.;
if (scale_data) v_scale = scale_data[gid * group_size + cid];
if (bias_data) v_bias = bias_data[gid * group_size + cid];
v_y -= v_bias;
if (v_scale != 0) v_y /= v_scale;
iter_d_x_data[0] =
(dly * v_scale - number_inv * dss * v_y - number_inv * dbs) *
var_inv;
if (d_x_data) {
for (int cid = 0; cid < number; cid++) {
tmp_x = x_src_data + cid;
tmp_y = y_src_data + cid;
iter_d_x_data = tmp_d_x + cid;
for (int imid = 0; imid < imsize;
imid++, iter_d_x_data += C, tmp_x += C, tmp_y += C) {
T v_y = tmp_x[0];
T dly = tmp_y[0];
T dss = dp_scale;
T dbs = dp_bias;
T v_scale = 1.0, v_bias = 0.;
if (scale_data) v_scale = scale_data[gid * group_size + cid];
if (bias_data) v_bias = bias_data[gid * group_size + cid];
v_y -= v_bias;
if (v_scale != 0) v_y /= v_scale;
iter_d_x_data[0] =
(dly * v_scale - number_inv * dss * v_y - number_inv * dbs) *
var_inv;
}
}
}
iter_x_data = iter_x_data_backup + group_size;
iter_y_data = iter_y_data_backup + group_size;
iter_d_x_data = iter_d_x_data_backup + group_size;
if (d_x_data) {
iter_d_x_data = iter_d_x_data_backup + group_size;
}
}
}
if (data_layout == DataLayout::kNHWC) {
iter_x_data = x_data + (bid + 1) * C * imsize;
iter_d_x_data = d_x_data + (bid + 1) * C * imsize;
if (d_x_data) {
iter_d_x_data = d_x_data + (bid + 1) * C * imsize;
}
iter_y_data = y_data + (bid + 1) * C * imsize;
}
}
Expand Down
2 changes: 1 addition & 1 deletion test/dygraph_to_static/test_deal_inplace.py
Original file line number Diff line number Diff line change
Expand Up @@ -90,7 +90,7 @@ def run_test(self, dygraph_fn, *inputs, static_n_times=1):
dygraph_out.numpy(),
static_out.numpy(),
rtol=1e-5,
atol=1e-8,
atol=1e-6,
err_msg=f"Run {i}-th check failed.",
)

Expand Down
51 changes: 51 additions & 0 deletions test/legacy_test/test_group_norm_op_v2.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@
import unittest

import numpy as np
from utils import dygraph_guard

import paddle
from paddle import base
Expand Down Expand Up @@ -610,5 +611,55 @@ def test_one_dim_input_static_API():
self.assertRaises(ValueError, test_one_dim_input_static_API)


class TestGroupNormWithOptionalgradX(unittest.TestCase):
def test_group_norm_cpu_with_optional_grad(self):
with dygraph_guard():
origin_device = paddle.device.get_device()
paddle.device.set_device("cpu")
x = paddle.randn([16, 32])
x.stop_gradient = False
gpn = paddle.nn.GroupNorm(num_groups=8, num_channels=32)
y = gpn(x)
dw_ref, db_ref, dx_ref = paddle.grad(y, [gpn.weight, gpn.bias, x])
try:
dw, db, dx = (
paddle.grad(y, gpn.weight)[0],
paddle.grad(y, gpn.bias)[0],
paddle.grad(y, x)[0],
)
except Exception as e:
raise e
finally:
paddle.device.set_device(origin_device)
np.testing.assert_equal(dw.numpy(), dw_ref.numpy())
np.testing.assert_equal(db.numpy(), db_ref.numpy())
np.testing.assert_equal(dx.numpy(), dx_ref.numpy())

def test_group_norm_cpu_with_optional_grad_nhwc(self):
with dygraph_guard():
origin_device = paddle.device.get_device()
paddle.device.set_device("cpu")
x = paddle.randn([4, 32, 32, 32])
x.stop_gradient = False
gpn = paddle.nn.GroupNorm(
num_groups=8, num_channels=32, data_format="NHWC"
)
y = gpn(x)
dw_ref, db_ref, dx_ref = paddle.grad(y, [gpn.weight, gpn.bias, x])
try:
dw, db, dx = (
paddle.grad(y, gpn.weight)[0],
paddle.grad(y, gpn.bias)[0],
paddle.grad(y, x)[0],
)
except Exception as e:
raise e
finally:
paddle.device.set_device(origin_device)
np.testing.assert_equal(dw.numpy(), dw_ref.numpy())
np.testing.assert_equal(db.numpy(), db_ref.numpy())
np.testing.assert_equal(dx.numpy(), dx_ref.numpy())


if __name__ == '__main__':
unittest.main()
Loading